Studio & Theatre Lamps Handbook

Studio Lamps

Contents	
Introduction	1-2
Health and Safety Guide	- 3
Introducing CID	4
Technical Digest	5-10
Index by Lamp Code	11
Technical Specifications	12-25
Halogen Lamp Substitution Guide	26-28
Discharge Lamps CSI and CID	29-32
CIE Chart	Inside Back Cover

Notes for Technical Specifications

- D-Frosted envelope
- E Designed for Ellipsoidal Mirror Spotlights. May not be suitable for fresnels.
- F -Frosted envelope available to special order.
- L -110/115V rating available to special order.
- M-Twin filament lamp. Filament sizes relate to major and minor coils.
- S Specially designed for Suez Searchlight applications.
- T –Twin filament lamp. Lumen figures relate to single and twin filament options.
- X -Non-stock item available to special order.

Important Operating Notes

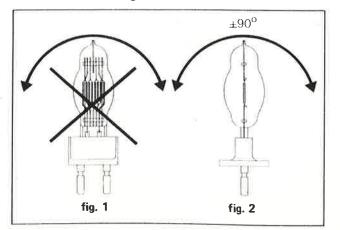
Caution notices are included with all Studio/Theatre lamps: Users are urged to read and comply with these.

1 Handling precautions

Lamps with quartz envelopes should not be handled without suitable precautions. If accidently touched with the skin, the lamp must be cleaned with alcohol applied with a soft clean cloth. Failure to observe this precaution will permanently mark the bulb.

2 Operating precautions

All lamps in this catalogue should be operated with a series fuse in the circuit, as shown on page 8.


Lamps of quartz construction use a gas filling at a pressure higher than atmospheric, and as the lamp can in rare instances shatter in use, suitable shielding techniques should be employed where appropriate. Also protect the lamp from mishandling, scratches and abrasions, and do not operate at above correct rated voltage.

3 Operating position

The correct operating position for the lamps in this catalogue are included in the specifications given. These

should be observed to ensure optimum performance and life.

In all cases permitted burning angles refer only to orientation in the vertical plane at right angles to the normal V.B.D. filament plane, see fig. 2. Angled burning by rotation in the plane of the filament is not recommended, see fig. 1.

1. Explanation of Lamp Codes Used

Lamps listed in this handbook are those designed for use in theatre and/or studio applications. Standard lamps are shown in bold typeface, thus **CP40**, in the listings and are registered with the Lighting Industries Federation (UK) in the following groups :

"CP" Prefix – Lamps designed for use in conjunction with film balanced for 3200K. These are single ended types intended for use in fresnel/ellipsoidal spotlights etc.

"P2" Prefix – Again for use with 3200K colour film stock for floodlighting applications and movielights.

"T" Prefix – Lamps intended for theatre spotlight applications. These are of lower colour temperature (2900-3050K) and longer life than the often similar CP types above.

In addition to these standard ranges, a number of similar types are available to special order and in most cases, a minimum order quantity will apply. These include non-standard voltage ranges of some types e.g. 100V, 110/115V, 120V and also a number of experimental types which have Thorn "HX" prefix and are indicated in fine type face.

A number of types are available made to American ANSI Specification and these use the random 3 letter codes allocated by the American National Standards Inst. where performance specifications are on file. Lamps carrying the ANSI code are directly interchangeable with similarly coded US domestic products.

2. Lamp Bases

The listings use the IEC International designations for lamp bases. Where appropriate, alternative local

descriptions are appended.

3. Filament Format

The listings use the following codings for filament shape :

S.C. – Axial Single Coil – equivalent to ANSI C8.

C.C. - Axial Coiled Coil - equivalent to ANSI CC8.

4. CP Range of Lamps for fresnel & spotlight fittings

As the result of extensive and sustained development work, much of it original, Thorn Lighting are now able to offer a comprehensive range of lamps operating on the Tungsten Halogen principle and of quartz contsruction, for all Television, Studio 'Motion' picture and Theatre lighting purposes.

The range of lamps available is now so wide that it has been unnecessary to continue to supply lamps with glass envelopes for film and television studio lighting purposes.

Thorn have been strongly supported by the television and film industries in this decision to discontinue glass lamps for studio lighting purposes. This is because the industry has been quick to appreciate not only the financial advantages of quartz halogen lamps, but also their superiority from the point of view of reliability and virtually constant colour temperature.

5. 'T' class lamps for theatre spot light fittings

With this group of lamps Thorn have continued their policy of developing a quartz halogen equivalent for existing glass lamps. There is a quartz halogen replacement lamp for all popular lamps used in theatre spot fittings.

Because these lamps operate at a lower colour temperature than the CP range, the average life that can

6. Lamps for Ellipsoidal Spotlights

A problem is encountered with some ellipsoidal spotlight luminaires due to the fact that a portion of the reflected beam of light is directed onto the cap of the lamp designed for fresnel fittings. This leads to overheating of the cap and seal which may result in premature lamp failure.

Thorn have therefore designed lamps intended for

M.P. – Monoplane Grid – equivalent to ANSI C13. *B.P.* – Biplane Grid – equivalent to ANSI C13D.

T.F. – Twin Monoplane Grid – equivalent to ANSI 2C13.

The increase in the use of the lamps we now manufacture is due to the Thorn policy of supplying direct replacement quartz halogen lamps for those glass studio lamps in common use simultaneously with the development of original types. These exploit the important advantages of compact size offered by quartz halogen construction.

As a result Thorn are now able to supply direct replacement quartz halogen lamps for use in fresnel and spotlight fittings of from 500 watts to 10,000 watts. These lamps employ a wide range of commonly accepted bases.

Thorn also offer a similarly comprehensive range of lamps of original design which give fittings manufacturers more compact lamps and permit the construction of smaller lighter and more efficient luminaires.

be offered now that lamps are available of quartz halogen construction, is a remarkable 750 hours for most of the range. Similar cost savings to those offered by quartz halogen CP lamps are now presented by the quartz halogen 'T' range.

Thorn continue to manufacture conventional glass lamps for theatre spotlight fittings as shown in table 10.

use in ellipsoidal spotlights where the size of the cap has been reduced and the neck length correspondingly increased, thus removing the critical seal area from the reflected radiation and ensuring that optimum lamp life is obtained. Lamps developed for this application are **CP56**, HX81 and lamp types in tables 6, 12 and 14.

7. Linear and 'U' lamps – for studio lighting 3,200°K

Whilst a comprehensive selection of lamps for spotlight fittings is important to the lighting director of almost equal importance is a range suitable for the many different fittings now on the market which use tungsten halogen lamps of tubular construction. Thorn believe their range gives a wide choice and is unmatched in performance and reliability. The Thorn range of lamps of this type is also exceptional in as much as it offers lamps in an original 'U' shape. Developed by Thorn engineers to meet the demand for high wattage lamps of compact construction these lamps are widely used in a variety of light weight portable fittings.

8. Hardglass Halogen compared with Quartz Halogen

The tungsten halogen principle is now so well known and documented elsewhere that it is considered unnecessary to describe it here. However should you require details of this principle then please contact your nearest Thorn Lighting Subsidiary or Branch. It is important to distinguish between Hard glass lamps that merely have a halogen compound added to the filling gas and lamps such as those enumerated, which are of quartz construction. The former are from the point of view of life and performance identical to conventional glass lamps of the same rating, the halogen only serving to prolong the usefulness of the lamp by preventing internal blackening due to evaporated tungsten. However, once a lamp is constructed from quartz with its higher melting point, instead of glass, the designer can make use of the much greater strength of the smaller envelope. It is then possible to increase the filling pressure which by reducing tungsten evaporation from the filament prolongs the life of the lamp to at least twice that of a glass lamp of equivalent efficacy.

Thorn 'Compact Source lodide' Discharge Lamps (C.S.I.)

This group of lamps known under the generic term of C.S.I. lamps were developed by Thorn some years ago as high efficiency compact source light sources; initially for follow spot fittings and later in the sealed beam version for the illumination of stadia to meet the stringent demands of colour television.

Brief details are included in this booklet as these lamps are now commonly used for location film and television work. Their popularity for this type of work is mainly due to the increasing demand for reliable light weight luminaires which can be used for location filming or * O.B. work in colour, with outstanding economy, not only from the point of view of the demand made on generator capacity but also because of initial low cost and relatively long lamp life.

Development work has enabled Thorn to offer these lamps in "Hot Restrike" versions and this important feature adds considerably to the versatility of this type of light source and greatly increases its usefulness to the lighting director. Full specifications of the Thorn C.S.I. Hot Restrike lamps mentioned above can be found in the relative Thorn data sheets (ref. L5/TA and L12/TA). Details of standard versions which have similar operating characteristics are contained in data sheets (ref L28/T and 99-122).

Control gear necessary for the operation of these lamps is available from Thorn Lighting Ltd. and full details will be found in the above data sheets.

Please note that the lamps average rated life may be affected if the pinch seal or ferrule temperature exceeds 400°C.

*Outside Broadcast.

Tungsten Halogen Studio and Theatre Lamps — Caution

1. To avoid any possibility of electric shock, disconnect the equipment from the power supply before removing and/or replacing the lamp or fuse,

2. Articles fabricated from quartz or glass are inherently fragile and there is a remote possibility of a lamp shattering violently if subjected to mechanical/thermal shock or abrasion. Inserting the lamp into the holder, by holding the bulb, could cause mechanical breakage of the envelope and/or seal. For your safety, install by holding the lamp cap and use eye protection where appropriate.

3. Oils/grease or handling of the quartz envelopes may contaminate the surface on operation and reduce performance. If the quartz is handled, clean before operation with a lint free cloth moistened with alcohol or Methylated Spirit.

4. Avoid improper operation of the lamp, e.g. at over voltage; in equipment (or at burning angles) not designed for the lamp type or rating. Operate in series with a rapid acting, high breaking capacity fuse of suitable voltage, rated as given in the table below. Non-observation of these points may damage the lamp or equipment.

- 5. In operation, the lamp :
- a) develops a high internal pressure and could shatter;
- b) develops a high surface temperature ;
- c) may cause UV irritation to skin and eyes on prolonged direct exposure.

Use appropriate screening for people and surroundings, Avoid operation in proximity to combustibles. Allow to cool before attempting replacement.

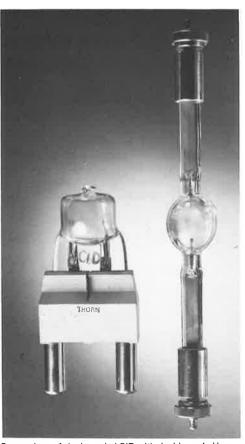
6. Life expired lamps should be broken in a suitable robust container, or wrapping, to retain flying fragments. There is a slight toxic content in the fill gas and larger quantities should only be broken in a well ventilated area.

Lamp	Fuse (rated cur	rent)	
Power	110-115V	115-130V	220-250V
500W	6A	6A	4A
650W	10A	6A	4A
1000W	16A (15A UK)	10A	6A
1500W	20A	16A (15A UK)	10A
2000W	25A (30A UK)	25A (30A UK)	10A
2500W	35A (30A UK)	25A (30A UK)	16A (15A UK)
5000W	65A (60A UK)	50A	25A (30A UK)
10000W	125A	100A	50A

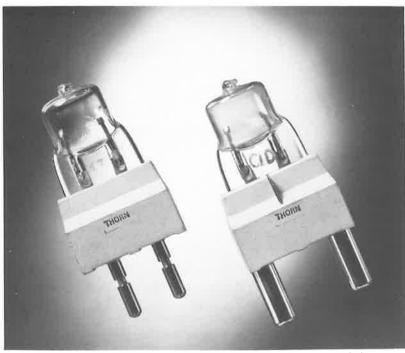
Additional precautions for the operation of metal halide discharge lamps and discharge lamps made for special applications also high pressure lamps without outer bulb.

Check that replacement lamp is correct type for the application, that rating, cap and control gear are correct.

Lamps having outer bulbs must not be operated if the outer glass is broken.


Instructions given with high pressure lamps must be carefully followed in all respects. Protection against the explosion of lamp must be maintained, do not remove any covering or shields until the lamp is located in an approved enclosed housing.

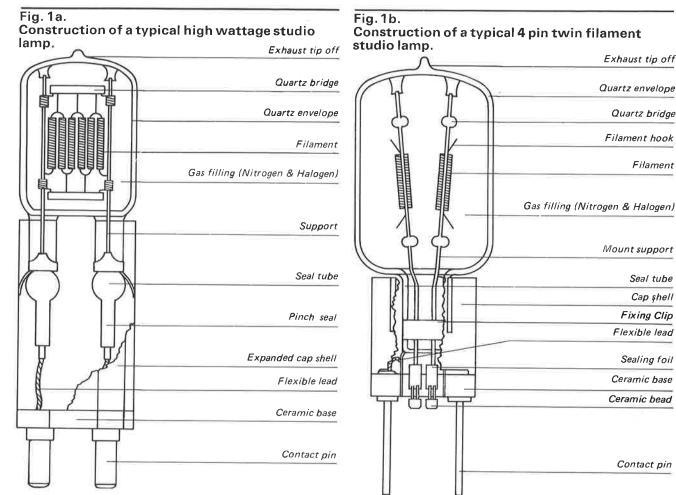
Certain lamps generate ozone in use and should be operated only in well ventilated locations.


High pressure mercury and xenon discharge lamps with quartz envelopes without glass outer bulbs emit short wave ultra violet radiation which is harmful to eyes and skin. Operators must be shielded from direct or indirect short wave ultra violet radiation.

Introducing CID Thorn compact iodide daylight lamp The exciting new concept in daylight filming

Comparison of single-ended CID with double-ended lamp. Standard and hot-restrike 1kW CI

At their Leicester laboratory, Thorn Lighting scientists have developed a new single-ended discharge lamp to meet demand from the TV and film industry for reliable 'daylight' colour rendering.


The Compact lodide Daylight (CID) lamp is one of the most important developments in the lighting industry for many years, offering for the first time an extremely robust single-ended lamp which gives correct colour rendering on film stock balanced for 5500° K. There are bare lamp and sealed beam versions available in 1 kW ratings, and a $2\frac{1}{2}$ kW bare lamp version. The 1 kW rating will be produced as a standard or hot restrike lamp.

The CID lamp is able to meet the very stringent demands of film lighting cameramen and TV lighting directors because of these combined advantages :—

Standard and hot-restrike 1kW CID lamps with G 22 and G 38 bi-post bases respectively.

- 1. Correlated colour temperature of 5500° K ±400 ,
- 2. Ra. colour rendering index of 85.
- 3. DIN standard 5035 classification class 1.
- 4. Unique single-ended construction.
- 5. Maintenance of colour throughout life.
- 6. Reduced flicker.

These features will commend the CID lamp to those lighting directors and cameramen who will appreciate its value as a key light, fill light and for high speed photography. With suitable control gear and lampholder the $2\frac{1}{2}$ kW bare lamp may be used in luminaires currently utilising the CP41 lamp, when modified to ensure adequate ventilation and mechanical compatibility. Discharge light sources currently offered cannot match this exclusive development.

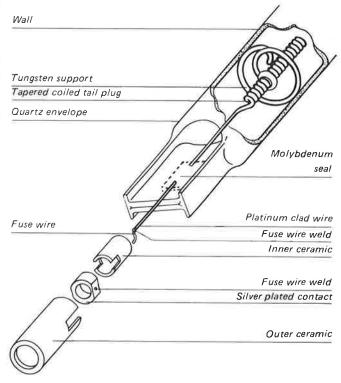
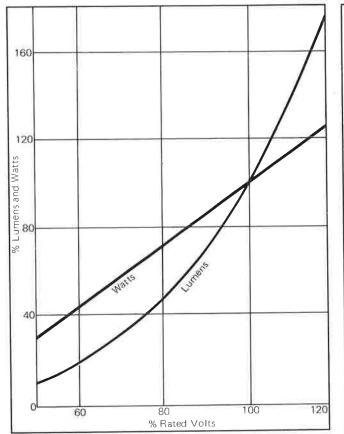
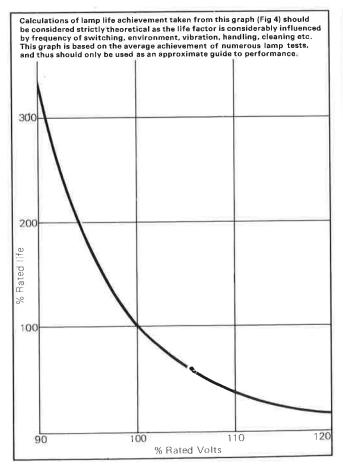
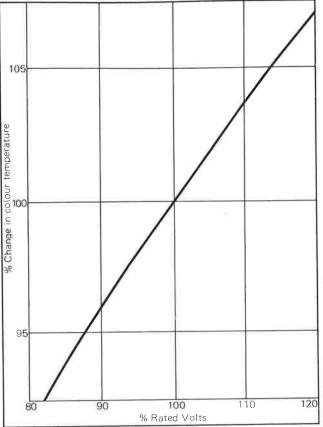


Fig.1c.


Construction of a typical low wattage theatre class Tungsten Halogen lamp.


Fig. 1d. Construction of end section of a typical Quartz Linear Tungsten Halogen Photographic lamp.


Fig. 2. Variation of light output and wattage with applied voltage for a typical studio lamp.

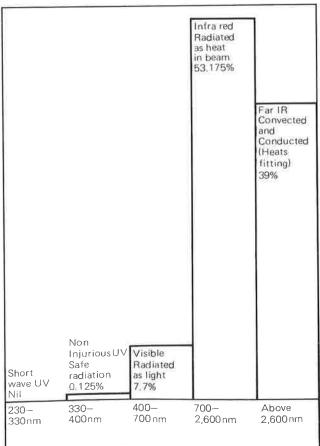
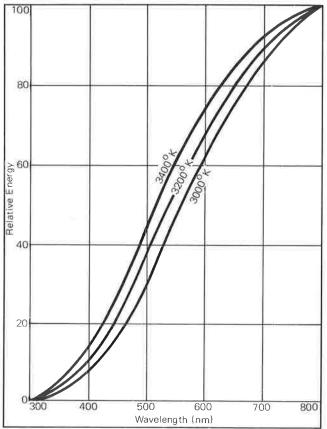

Fig. 4. Typical life variation against operating voltage.

Fig. 3. Colour temperature variation with voltage for typical studio lamp.


Fig. 5. Typical power balance of studio lamps.

6

Fig. 6.

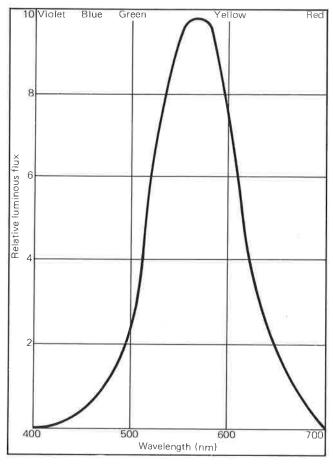
Total spectral energy distribution of typical studio lamp.

Spectral energy distribution can be shown in absolute terms (Fig. 6) whereas radiation in terms of visible light is related to the response of the human eye (Fig. 7).

Operating temperatures of tungsten halogen studio lamps

The following maximum and minimum temperatures are suggested for optimum life. Operation outside these figures will not necessarily cause immediate failure but will affect life adversely to an increasing extent.

Seal – 450°C maximum


Above this figure the sealing foil oxidises at a rate increasing with temperature and is frequently the cause of short life due to seal failure.

Bulb-250-800°C

Outside this range the halogen cycle becomes less efficient and blackening may occur. Temperatures above 1200°C will cause the bulb to soften.

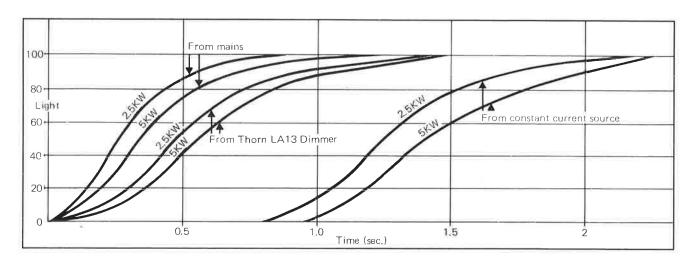

Fig. 8 Turn on time of studio lamps.

Fig. 7. Spectral distribution of luminous flux (Lumens) for typical theatre and studio lamp.

Pins – 300°C maximum

Above this figure the plating on the pins may lose adhesion and the contact deteriorate. Such deterioration may form local hot spots which rapidly worsen and may result in arcing and irrepairable damage to both lamp and holder. Should signs of this be evident on removal of a failed lamp it is important that a good contact is restored for the next lamp fitted otherwise this will rapidly fail in similar manner.

Surge Current

The cold resistance of a Studio lamp is approx. 1/17 of its value in normal operation. On switch on, theoretically a surge current of $17 \int 2 X$ the normal current would flow and depending on the thermal mass of the filament* this will fall to the lamp normal current in approx. 1 sec. In practice this max, theoretical current does not appear due to (a) switch on does not always occur at the peak of the AC voltage, (b) the supply has some impedance which is comparable with the cold resistance of high wattage lamps, i.e. max, possible surge current $= V \int 2$

where V is applied voltage and Z is sum of lamp cold resistance and supply impedance

Typically supply impedance is of the order of 0.3 ohm and lamp life is based on testing with such a supply. In the rare cases where the line impedance is lower than this figure, an adverse effect on life may be encountered particularly with high wattage types, due to the then extremely high surge current on switching.

Lamp	Туре	Cold Resistance		Max, Surge Current (amps) Line impedance=			
		(ohms)	0 ohms	0.1 ohms	0.3 ohms	0.5 ohms	Current
240V	10KW	0.34	1000	774	530	405	41.5
240V	5KW	0.7	486	424	340	283	20.8
115V	5KW	0.15	1085	650	360	250	43.5
240V	2KW	1.7	200	189	170	154	8.35
117V	2KW	0,41	404	324	233	182	17.1
240V	1 KW	3,4	100	97	92	87	4.15

*It should be noted that as the rated wattage is increased and/or the rated voltage decreased, the thermal mass of the filament is increased and it takes longer to reach

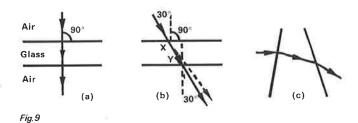
Fusing of Tungsten Halogen studio and theatre lamps

A lamp normally fails at end of life by fusing of the filament. Often an arc then forms and as there is little resistance to limit the current this rises to a very high value which if maintained can result in a serious overload on the envelope and seals. This might result in the lamp shattering. operating temperature. The surge current will similarly take longer to fall to the normal operating current.

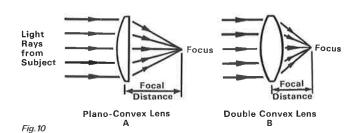
It is recommended that a HBC fuse is connected in line to interrupt any such arcs forming. Suitable types are 415–500V working High Breaking Capacity fuses to BS 88 or IEC 241, rated as below.

Lamp	Fuse (rated current)		
Power	(amps)		
(Watts)	100–1 1 5V	115-130V	220-250V
500	6	6	4
650	10	6	4
1000	16 (15 UK)	10	6
1500	20	16 (15 UK)	10
2000	25 (30 UK)	25 (20 UK)	10
2500	35 (30 UK)	25 (30 UK)	16 (15 UK)
5000	63 (60 UK)	50	25 (30 UK)
10000	125	100	50

1000W C.S.I. & C.I.D. for 220, 240V control gear 20 amp. HBC fuse (Arc volts 77) 2500W C.I.D. for 220, 240V control gear 30 amp HBC fuse (Arc volts 100 nom)


Optics

When a ray of light passing through air meets the surface of some translucent material in its path the energy of the light is divided up. Part of the light will be reflected, part absorbed, and part transmitted, and the relative amounts of these three parts will depend on the nature and geometry of the material. If the surface is flat and smooth (polished) it will act as a plain mirror and the laws of reflection will be obeyed (for example, the angle at which the ray meets the surface will equal the angle at which the reflected light leaves the surface). If the surface is rough (matt) the reflected light will be reflected in many directions, the latter form of reflections being known as diffuse, while the former is specular reflection. The material may have either matt or smooth surfaces and also be opaque, when no light will pass through, or transparent, when a great deal of light is transmitted, or something between transparent and opaque which is termed translucent, where a reduced amount of light is transmitted.


A piece of window glass would reflect specularly and would transmit a large proportion of light falling on it because of its transparency, and images could be formed or seen through it. It could be frosted, which would make the reflection diffuse, and the glass would also become translucent, and images could not be clearly formed or seen through it as a result, or the glass can be opaque, reflecting or transmitting selectively as to colour, as with many other substances which have 'colour' by absorbing all colours except the one reflected or transmitted. A red signal lamp glass transmits only red, while absorbing blue green etc., and an emerald reflects green but absorbs all other colours.

These properties of reflecting, transmitting or absorbing can be specified by the terms reflectance, transmission or absorbance, and are a measure of the proportion of the total light falling upon the material which is reflected, transmitted, or absorbed.

Dealing now with polished transparent materials, a further effect has to be taken into account. As the ray of light leaves or enters the surface between, say, air and glass, it changes direction : if the ray passes right through the glass it will be diverted twice. The amount by which it is diverted will depend on the angle at which it meets the surface and a property of the glass known as its refractive index. As shown in the diagram Fig. 9 (a), if the ray is directed perpendicularly towards glass, it passes through without refraction (or bending). The ray is said to be 'normal' to the surface, and angles of meeting the surface are measured from the normal position, as shown in Fig. 9 (b) where the angle of incidence is 30° (to the

dotted line normal). In this case refraction takes place at X and again at Y and if the two surfaces are parallel to each other the direction of the ray in air is the same on both sides of the glass, but a sideways displacement takes place. It is evident that the two surfaces can be made other than parallel, in which case the final direction of the ray is not the same as the direction of the ray entering the glass. This is shown in Fig. 9 (c) and the two surfaces might well be imagined as those of a prism or part of a simple lens. A lens is essentially a piece of transparent material which has front and back surfaces curved so that light rays passing through them are refracted in a predetermined manner. If the curved surfaces are practically part of a sphere, which is the most usual shape, the almost parallel rays from a distant object will be refracted so as to meet at a point some way from the lens. This point is called the focus, and the distance from the lens, the focal length. This is shown in Fig. 10A and it is fairly evident that the deeper the curvature the shorter will be the focal length, and also the double convex lens with both sides curved will have a shorter focal length than a similar lens with one surface plain or flat (planoconvex) (Fig. 10B).

It is also evident that if the source of light were placed at the focus, the rays passing through the lens would form a parallel beam. This is the basis of design of a spotlight. When the source is further away from the lens than the focus a converging beam is formed, and an image of the source can be produced on a screen. When the source is closer than the focal point a divergent beam is produced and this is the effect obtained with a floodlight.

A lens for a high-powered studio fitting would need to be about 12 inches in diameter, and a plano- or biconvex lens of this diameter would be heavy and difficult to make. The thickness of the lens in the centre can, however, be greatly reduced without altering substantially the optical 'power' of the lens. This may be achieved by taking the convex surface of the lens and dividing this theoretically into circular sections, reducing the thickness of all sections to a common minimum acceptable, and sliding them back to the level of the original flat surface. Such a lens is called a 'Fresnel' lens and is usually as shown in the diagram (Fig. 11).

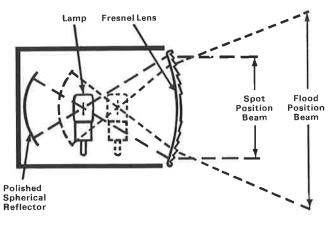


Fig. 11

A degree of compensation is needed to correct for the change in position of the annular sections relative to the focal point, and this is greatly helped by making the plano surface slightly concave, as shown in Fig. 11 (drawing of Fresnel studio housing).

The reflector behind the lamp in this fitting is a spherical curvature, and is used to collect light rays directed away from the lens, which would thus be wasted, and reflect them back through the source towards the lens. The source is at the centre of curvature of this mirror, and moves in fixed spacial relationship with the mirror from the 'spot' to the 'flood' position, as required.

Luminaires

The method which originated in the United States of America to measure the performance of luminaires is becoming more and more generally accepted internationally. The characteristics are expressed in terms of beam angle and field angle (see Fig. 12). The limit of the beam angle is the points on the curve where the candle power is 50% of the maximum and the field

1.0 0.5 0.1 Field Angle **Beam Angle** angle is limited by those points of the curve where the candle power is 10% of the maximum.

The efficiency of luminaires is expressed as a ratio of the luminous flux leaving the fitting to the lumens given out by the light source. Beam efficiency is the ratio of lumens within the beam angle to that given out by the light source. Field efficiency is the ratio of lumens within the field angle to that given out by the light source.

Efficiencies of typical luminaires calculated from the luminous flux in the field angle for various types of fittings are:-

Fresnel Spotlights (Fig. 13)

Efficiencies of 0.08 in the spot position to 0.28 in the flood position are usual for this type of fittings. The average for a group of Fresnel spots is approximately 0.18 or 18%.

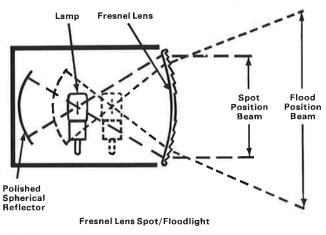
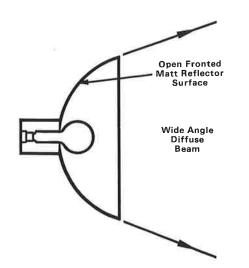



Fig. 13

Fig. 12

Soft Lights and Cyclorama (Fig. 14)

Efficiencies for this type of lighting vary between 0.40 and 0.64, and for a group of fittings is approximately 0.50 or 50%.

therefore regular maintenance should be carried out to ensure that best performance is achieved.

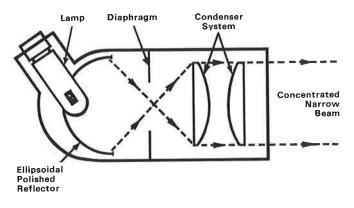


Fig. 15 Ellipsoidal Spotlight

Fig. 14 Scoop Floodlight

Ellipsoidal Spotlights (Fig. 15) Efficiencies range between 0.28 and 0.40, and for a group of fittings is approximately 0.35 or 35%.

The foregoing values can only be expressed as averages and due consideration must be given to the effect of oxidation of reflecting surfaces, and during the course of time lamp envelopes and fitting lenses may transmit less light if dust is allowed to accumulate;

Index by Lamp Code

Tungsten Halogen Incandescent Lamps

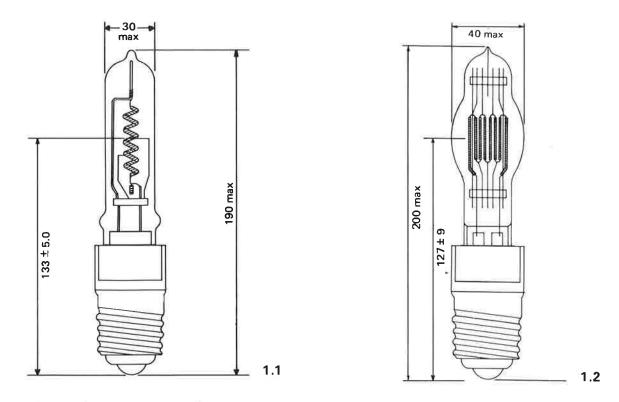
ANSI Series	Table	
BTL	11	
BTM	11	
BTN	11	_
BTP	11	
BTR	11	_
BVT	14	_
BVV	14	_
BVW	14	_
BWA	7	-
BWF	1	-
BWG	1	_
CWZ	14	-7
CXZ	7	-
CYV	7	-
DPY	8	-
DTA	13	-
DXN	24	-
DXW	24	-
DXX	17	
DYA	19	_
DYN	19	
EGN	5	_
EGR	5	
EGT	5	_
	15	_
EHG	22	-
EKM	12	-
EWE	12	_
EXA		-
EXB	12	- 12
EXC	26	-
EXD	26	-
EXE	26	_
EXF	12	
FAD	17	_
FCM	20	
FCV	15	_
FDF	20	_
FDN	20	
FEL	15	
FEP	15	
FEX	21	
FEY	21	
FHM	20	

CP' Series	Table
CP2*	10
CP3*	10
CP23	3
CP24	3
CP29	8
CP30	16
CP32	16
CP39	5
CP40	5
CP41	7
CP43	2
CP51	11
CP52	11
CP53	13
CP54	9
CP56	7
CP58	16
CP59	1
CP60	25
CP61	25
CP62	25
CP77	15
CP79	2

'HX' Series	Table	
HX14	11	
HX16	13	
HX25	8	
HX26	1	_
HX27	2	_
HX37	6	_
HX48	7	_
HX53	13	_
HX56	7	_
HX81	3	
HX82	3	
HX86	15	

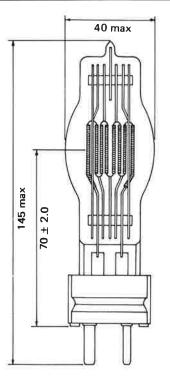
P2' Series	Table
P2/1 *	10
P2/4*	10
P2/6	17
P2/7	22
P2/10	22
P2/11	10
P2/12	22
P2/13	17
P2/14	18
P2/15	20
P2/16	23
P2/17	23
P2/25	23
P2/26	23
P2/27	21
P2/28	20
P2/29	20
P2/30	20
P2/31	20

Table
10
3
3
11
11
12
13
11
4


*Non-halogen

Discharge Lamps CSI

CSI Ref.	Table
99-2241	29
99-0201	26
99-0221	27
99-0421	28
99-1222	30
99-1422	31


Discharge Lamps CID

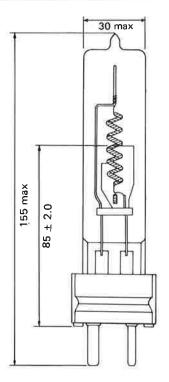
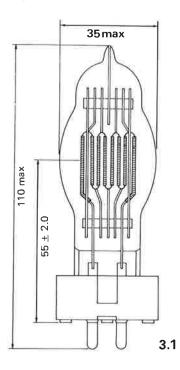
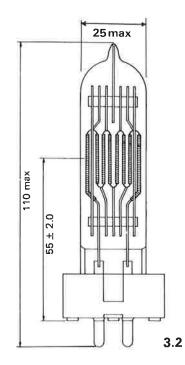
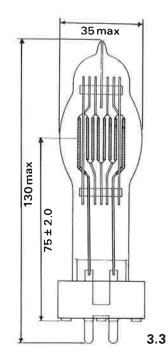

CID	
Ref.	Table
99-0222	32
99-0422	33
99-1225	35
99-1425	36
99-0431	34

Table 1 E40 Base (Mogul Screw)

					Ave.					
Watts	Lamp	Voltage	Col.	Lumens	Life	Fila	ament	Burning	Notes	Fig.
	Code		Temp.	$\times 1000$	Hrs	Form	$H \times W$	Position		No.
2000	CP59	220/230,240	3200	50.0	300	CC	40×7.0	ANY		1.1
2000	BWF	120	3200	59.0	300	СС	40×7.0	ANY	Х	1.1
2000	BWG	120	3200	56.0	300	СС	40×7.0	ANY	D, X	1.1
2000	HX26	220, 240	3200	54.0	400	MP	22×22.5	$VBD\pm90$	Х	1.2
2000	HX26	120	3200	58.0	400	MP	24×21.5	$VBD\pm90$	Х	1.2

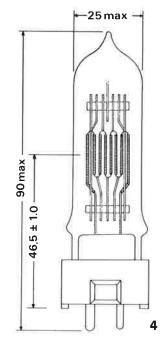


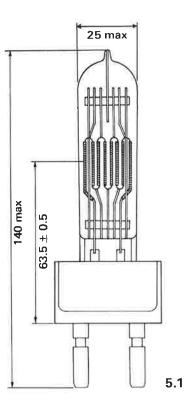

2.2


Table 2 GY16 Base

					Ave.					
Watts	Lamp	Voltage	Col.	Lumens	Life	Fila	ament	Burning	Notes	Fig.
	Code	_	Temp.	$\times 1000$	Hrs	Form	$H \times W$	Position		No.
2000	CP43	220, 240	3200	54.0	400	MP	22×22.5	$VBD\pm90$		2.1
2000	CP43	115/120	3200	56.0	400	MP	24×21.5	$VBD\pm90$		2.1
2000	CP79	220, 240	3200	52.0	250	BP	18×16.5	$VBD \pm 90$	Х	2.1
2000	HX27	220/230, 240	3200	52.0	300	СС	40×7	ANY	Х	2.2

2.1




Table 3 GX 9.5 Base

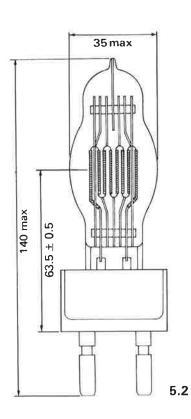
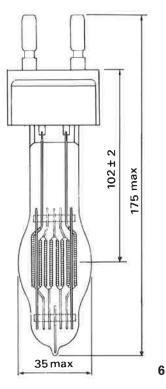
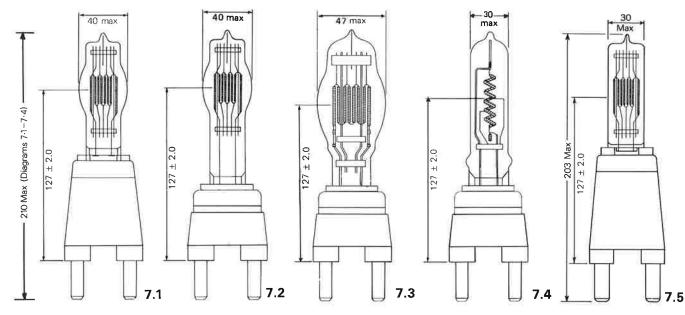

					Ave.					
Watts	Lamp	Voltage	Col.	Lumens	Life	Fila	ament	Burning	Notes	Fig.
	Code		Temp.	$\times 1000$	Hrs	Form	$H \times W$	Position		No.
500	HX82	220, 240	2950	9.5	750	MP	13.5×15	VBD+90	Х	3.2
500	HX82	115/120	2950	10.5	750	MP	12×15	VBD+90	Х	3.2
650	T12	220, 240	3000	13.5	750	MP	15.5×15	VBD±90		3.2
650	T12	115/120	3000	13.5	750	MP	15×13.5	VBD±90		3.2
650	CP23	220, 240	3200	16.8	100	MP	13.5×15	VBD+90		3.2
650	CP23	115/120	3200	17.0	100	MP	15×13.5	VBD±90		3.2
1000	CP24	220, 240	3200	26.0	200	MP	18.5×17.5	VBD+90		3.1
1000	CP24	115/120	3200	27.0	200	MP	18.5×16	VBD+90		3.1
1000	T11	220, 240	3050	23.0	750	MP	18×17.5	VBD+90		3.1
1000	T11	115/120	3050	23.0	750	MP	19×16	VBD+90		3.1
1000	HX81	220, 240	3050	23.0	750	MP	18×17.5	VBD+90	E, X	3.3
1000	HX81	115/120	3050	23.0	750	MP	19×16	VBD±90	E, X	3.3

Table 4	GY9	.5 Base
---------	-----	---------

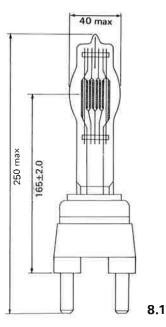

					Ave.					
Watts	Lamp Code	Voltage	Col. Temp.	Lumens $\times 1000$	Life Hrs	Fila Form	ament H×W	Burning Position	Notes	Fig. No
500	T18	220, 240	3050	11.0	300	MP	12×13	VBD±90		4

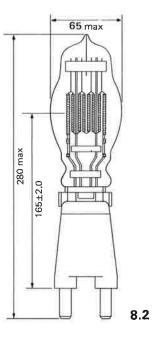

Table 5 G22 Base (Med. Bipost) 63.5 LCL

Watts	Lamp	Voltage	Col.	Lumens	Ave. Life	Fila	ament	Burning	Notes	Fig.
	Code		Temp.	imes1000	Hrs	Form	Н×W	Position		No.
500	EGN	120	3200	13.0	100	MP	11×11	$VBD\pm90$	Х	5.1
650	CP39	115/120	3200	17.0	100	MP	15×13.5	$VBD \pm 90$		5.1
650	CP39	220, 240	3200	16.8	100	MP	13.5×15	$VBD \pm 90$		5.1
750	EGR	120	3200	20.5	200	MP	15×13	$VBD \pm 90$	Х	5.2
1000	EGT	120	3200	28.0	250	MP	18.5×16	$VBD\pm90$	Х	5.2
1000	CP40	115/120	3200	27.0	200	MP	18.5×16	$VBD\pm90$		5.2
1000	CP40	220, 240	3200	26.0	200	MP	18.5×17.5	VBD \pm 90		5.2

Table 6 G22 Base (Med. Bipost) 102 LCL

4						Ave.					
	Watts	Lamp	Voltage	Col.	Lumens	Life	Fila	ament	Burning	Notes	Fig.
		Code	9	Temp.	$\times 1000$	Hrs	Form	$H \times W$	Position		No.
6	650	HX37	220, 240	3200	16.8	100	MP	13.5×15	$VBU\pm 45$	E, X	6




Table 7 G38 Base (Mogul Bipost) 127 LCL

*

4

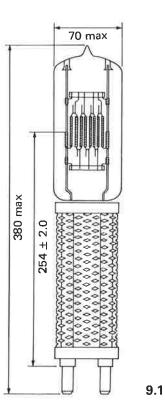
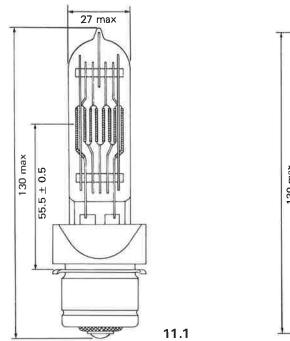

					Ave.					
Watts	Lamp	Voltage	Col.	Lumens	Life	Fi	lament	Burning	Notes	Fig.
	Code		Temp.	$\times 1000$	Hrs	Form	$H \times W$	Position		No.
1000	CYV	120	3200	28	250	MP	17.5×16.0	$VBD \pm 90$	Х	7.5
1500	CXZ	120	3200	41	300	MP	19.0×17.0	$VBD \pm 90$	Х	7.1
2000	СҮХ	120	3200	58	400	MP	24.0×21.5	$VBD\pm90$	Х	7.1
2000	CP41	115/120	3200	56	400	MP	24.0×21.5	$VBD \pm 90$	L	7.1
2000	CP41	220, 240	3200	54	400	MP	22.0×22.5	$VBD \pm 90$		7.1
2000	CP56	220, 240	3200	54	400	MP	22.0×22.5	$VBD \pm 90$		7.2
2000	CP56	115/120	3200	56	400	MP	24.0×21.5	$VBD \pm 90$	E	7.2
2000	HX56	120	3200	58	400	MP	24.0×21.5	VBD±90	E, X	7.2
2000	BWA	120	3200	59	300	CC	40.0×7.0	ANY	Х	7.4
3000	HX48	110/115,120	3200	82	400	MP	25.0×25.5	$VBD\pm 45$	S	7.3
3000	HX48	220, 240	3200	82	400	MP	24.0×27.0	$VBD\pm 45$	S	7.3
-								and the second se		

Table 8 G38 Base (Mogul Bipost) 165 LCL

Watts	Lamp Code	Voltage	Col.	Lumens	Ave. Life		lament	Burning	Notes	Fig.
2500	HX25	110/115,	l emp. 3200	×1000 67	Hrs 400	Form MP	H×W 24×22	Position VBD+90	S	<u>No.</u>
		115/120								
2500	HX25	220, 240	3200	65	400	MP	27.5×22.5	$VBD \pm 90$	S	8.1
5000	CP29	115/120	3200	145	500	MP	31×36	$VBD\pm45$		8.2
5000	CP29	220, 240	3200	135	500	MP	36×35	$VBD\pm 45$		8.2
5000	DPY	120	3200	145	500	MP	31×36	$VBD\pm 45$		8.2

1


1

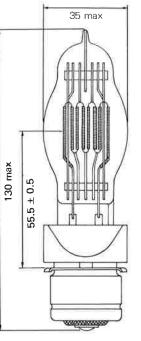
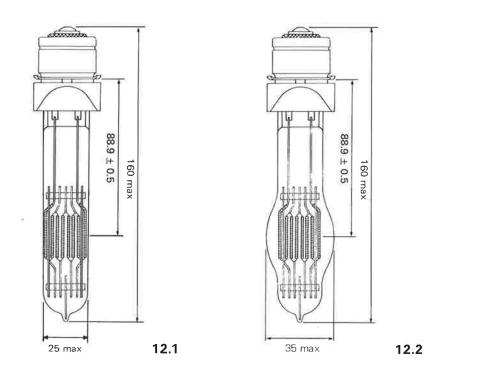
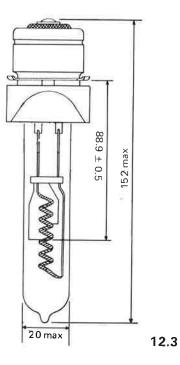

Table 9 G38 Base (Mogul Bipost) 254 LCL

Table 3	G30 Da	se (intogui b	ipost) 254 L	UL						
Watts	Lamp Code	Voltage	Col. Temp.	Lumens ×1000	Ave. Life Hrs	Form	ament H×W	Burning Position	Notes	Fig. No.
10,000	CP54	220, 240	3200	280	400	TF	31×39	$VBD\pm45$		9.1
				P2/4			CP2 P2/1			CPS

Table 10 Non Halogen Studio/Theatre/Photo Lamps

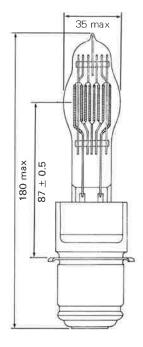
				Dimensio	ns (mm)		Nominal	Average		
	Lamp			Diameter	O/L	LCL	Lumens	Life	Filament	Burning
Watts	Code	Volts	Сар	А	В	С	imes1000	(Hours)	Formation	Position
500	T1	220, 240	MPFP28s/25	95 ± 5	180 ± 10	55.5 ± 0.5	9.5	200	Grid	$VBD \pm 9C$
500	CP2	240, 250	ES E27/27	80×2	160 ± 6		13.75	15	Pearl Bulb	ANY
500	P2/1	220/230 240/250	ES 27/27	89	183.5		11.0	100	Pearl Bulb	ANY
500	P2/4	220/230 240/250	ES 27/27	127.5	182.0	-	7.2	12	Satin Etched Bulb Reflect Photoflood	
1000	CP3	240, 250	GES E40/45	130 ± 2	290 ± 10	225 ± 8	26.5	20		ANY


11.**2**


Table 11 P28 Base (Med. Prefocus) 55.5 LCL

]

-


	1		0.1		Ave.			Duration	Netre	 :
Watts	Lamp Code	Voltage	Col. Temp	Lumens $ imes$ 1000	Life Hrs	Form	lament H×W	Burning Position	Notes	Fig. No.
500	BTL	120	2950	11	750	MP	12×15	$VBD\pm90$	Х	11.1
500	BTM	120	3200	13	100	MP	11×11	$VBD \pm 90$	Х	11.1
500	T17	115/120	2950	11	750	MP	12×15	$VBD \pm 90$		11.1
500	T17	220, 240	2950	10.5	750	MP	13.5×15	$VBD \pm 90$		11.1
650	T13	115/120	3000	13.5	750	MP	15×13.5	$VBD \pm 90$		11.1
650	T13	220, 240	3000	13.5	750	MP	15.5×15	$VBD \pm 90$		11.1
650	CP51	115/120	3200	17	100	MP	15×13.5	$VBD \pm 90$		11.1
650	CP51	220, 240	3200	16.8	100	MP	13.5×15	$VBD \pm 90$		11.1
750	BTN	120	3000	17	750	MP	15×14	$VBD \pm 90$	Х	11.2
750	BTP	120	3200	20.5	200	MP	15×13.5	$VBD \pm 90$	Х	11.2
1000	BTR	120	3200	28	250	MP	18.5×16.5	$VBD \pm 90$	Х	11.2
1000	HX14	120	3050	24.5	500	MP	19×16	$VBD \pm 90$	Х	11.2
1000	T14	115/120	3050	23	750	MP	19×16	$VBD \pm 90$		11.2
1000	T14	220, 240	3050	23	750	MP	18×17.5	$VBD \pm 90$		11.2
1000	CP52	115/120	3200	27	200	MP	17×16	$VBD \pm 90$		11.2
1000	CP52	220, 240	3200	26	200	MP	18.5×17.5	$VBD\pm90$		11.2

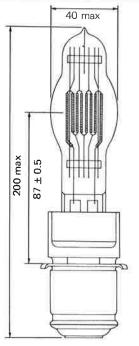
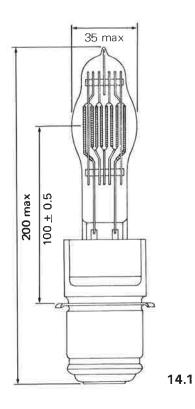


Table 12 P28 Base (Medium Prefocus) 88.9 LCL

Watts	Lamp	Voltage	Col.	Lumens	Ave. Life	Fi	ilament	Burning	Notes	Fig,
	Code	vontago	Temp.	×1000	Hrs	Form	H×W	Position	110103	No.
500	EXF	120	2950	10.5	750	MP	12×15	$VBU\pm 45$	Е, Х	12.1
750	EXB	120	3000	17	750	MP	15×13.5	$VBU\pm 45$	Е, Х	12.2
1000	EXA	120	3050	24.5	750	MP	19×16	ANY	Е, Х	12.2
1000	T15	115/120, 220, 240	3050	23	750	MP	19×16 18×17.5	ANY	E	12.2
1000	EWE	220, 240	3200	26.5	250	СС	24×7	ANY	E, X	12.3



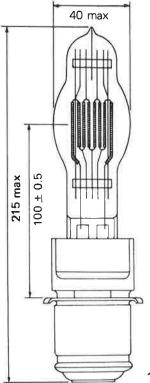
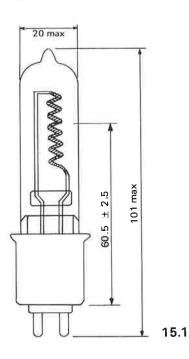

13.**2**

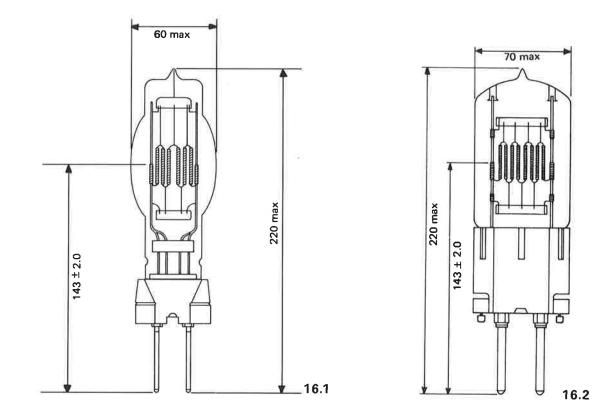
Table 13 P40 Base (Mogul Prefocus) 87 LCL

Watts			Col.	Lumens	Ave. Life	F	lament	Burning	Notes	Fig.
	Code		Temp.	$\times 1000$	Hrs	Form	H×W	Position		No.
1000	T16	115/120 220, 240	3050	23	750	MP	19×16 18×17.5	$VBD \pm 90$		13.1
1000	HX16	120	3050	24.5	750	MP	19×16	$VBD \pm 90$	Х	13.1
1500	DTA	120	3200	41	300	MP	19×17	VBD±90	Х	132
2000	HX53	120	3200	58	400	MP	24×21.5	$VBD \pm 90$	Х	13.2
2000	CP53	115/120	3200	56	400	МР	24×21.5	$VBD \pm 90$		13.2
2000	CP53	220, 240	3200	54	400	MP	22×22.5	$VBD \pm 90$		13.2

13.1



14.2


Table 14 F	A0 Base	(Mogul	Prefocus)	100 LCL
------------	---------	--------	-----------	---------

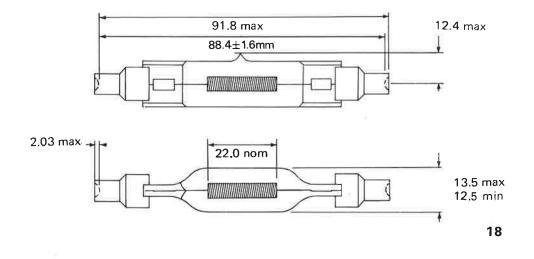
Watts	Lamp	Voltage	Col	Lumens	Ave. Life	F	ilament	Burning	Notes	Fig.
	Code	0	Temp.	imes1000	Hrs	Form	$H \times W$	Position		No.
1000	BVT	120	3050	24.5	500	MP	19×16	$VBD\pm90$	Е, Х	14.1
1000	BVV	120	3200	28	250	MP	18.5×16	$VBD\pm90$	Е, Х	14.1
1500	CWZ	120	3200	41	300	MP	19×17	$VBD\pm90$	Е, Х	14.2
2000	BVW	120	3200	58	400	ΜP	24×21.5	$VBD\pm90$	Е, Х	14.2

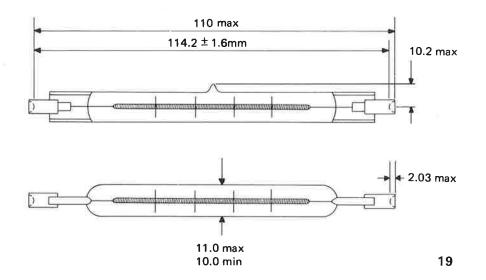
Table 15 G9.5 Base (Med. 2 pin)

Watts	Lamp	ANSI	Voltage	Col.	Lumens	Ave. Life	F	ilament	Burning	Notes	Fig.
VIOLUD	Code		0	Temp.	$\times 1000$	Hrs	Form	$H \times W$	Position		No.
650	HX86		220, 240	3100	15	300	СС	24×7	ANY	Х	15.1
750	2 11 2	EHG	120	3000	15	2000	СС	19×7	ANY	Х	15.1
1000	CP77	FEP	220, 240	3200	26.5	300	СС	24×7	ANY	Χ	15.1
1000	CP77	FEL	120	3200	27.5	300	СС	18×7	ANY	Х	15.1
1000	<u> </u>	FCV	120	3200	26	300	СС	18×7	ANY	XD	15.1

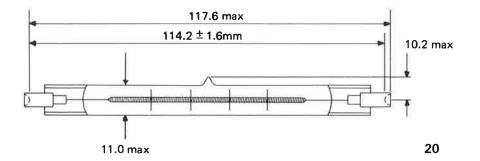
Table 16 GX38q Base

Watts	Lamp	Voltage	Col.	Lumens	Ave. Life	Fi	ilament	Burning	Notes	Fig
	Code		Temp.	$\times 1000$	Hrs	Form	H×W	Position		No.
1250/1250	CP30	220, 240	3200	27/56	300	TF	24×18.5	VBD+45	Т	16.1
1250/2500	CP58	220, 240	3200	27/59/91	300	TF	27.5×25 25×22	$VBD\pm 45$	ΜT	16.1
2500/2500	CP32	220, 240	3200	59/127	300	TF	27.5×29	$VBD\pm45$	Т	16.2

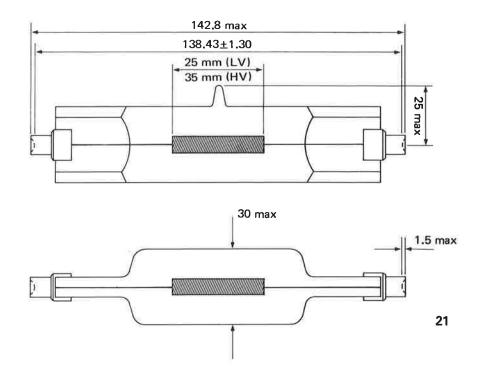




Table 17 R7s Base (Recessed Single Contact) 78.3 MCL

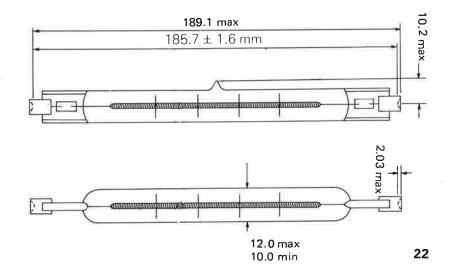
						Ave.					
Watts	Lamp C	Code	Voltage	Col.	Lumens	: Life	Filament		Burning	Notes	Fig.
	LIF	ANSI		Temp.	$\times 1000$	Hrs	Form	Length	Position		No.
650	P2/6	FAD	115/120	3200	17	100	CC	25	ANY		17
800	P2/13	DXX	220/230, 240/250	3200	20	75	CC	22	ANY		17


Table 18	R7s Base	(Recessed Single	Contact) 91.8 MCL
----------	----------	------------------	-------------------

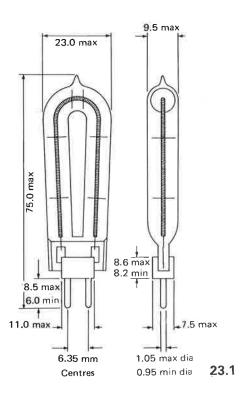
Watts	Lamp Code		Voltage	Col.	Lumens	Ave. Life	Filament Burning			Notes	Fig.
	LIF	ANSI	÷	Temp.	$\times 1000$	Hrs	Form	Length	Position		No.
800	P2/14		220/230 , 240/250	3200	20	50	CC	22	ANY		18

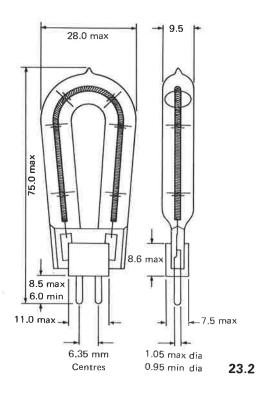

Table 19 R7s Base (Recessed Single Contact) 107 MCL

Watts	Lamp (Code	Voltage	Col.	Lumer	Ave. ns Life	Filament	Burning	Notes	Fig.
	LIF	ANSI		Temp.	$\times 1000$) Hrs	Form Length	Position		No.
1000		DYA	120	3200	28	150	SC	$HOR \pm 4$		19
1000		DYN	120	3200	27	150	SC	$HOR \pm 4$	D	19

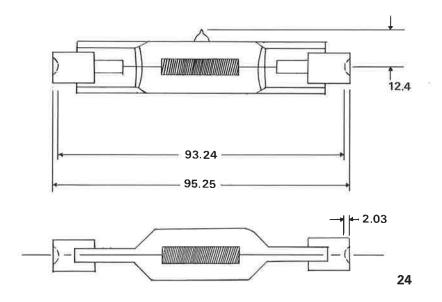

lable 20	K/s Bas	e (Reces	ssed Single C	contact)	117.6 IVIC	;L					
						Ave.					
Watts	Lamp C	ode	Voltage	Col.	Lumens	s Life	Fi	lament	Burning	Notes	Fig.
	LIF	ANSI		Temp.	×1000	Hrs	Form	n Leng	th Position		No.
500	P2/30	FDF	120	3200	13.25	400	SC	58	$HOR\pm4$		20
500	P2/31	FDN	120	3200	12.8	400	SC	58	$HOR\pm4$	D	20
800	P2/11		220/230, 240/250	3200	21.6	150	SC	68	$HOR \pm 4$		20
1000	P2/28	FCM	120	3200	27	300	SC	74	$HOR \pm 4$		20
1000	P2/29	FHM	120	3200	26.5	300	SC	74	$HOR \pm 4$	D	20

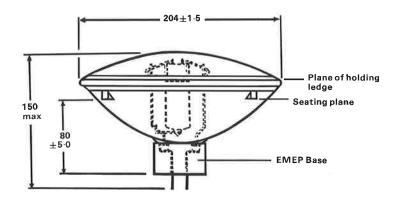
1.1. 20




Table 21 Rx7s Base (Recessed Single Contact) 141.2 MCL

Watts	Lamp C	ode	Voltage	Col.	Lumen	s Life		lament		Notes	Fig.
	LIF	ANSI		Temp.	$\times 1000$)	Form	n Leng	th Position		No.
2000	P2/27	FEY	120	3200	56.6	300	СС	25	ANY		21
2000	P2/27	FEX	220/230, 240	3200	50	300	СС	35	ANY		21


Table 22	R7s Bas	e (Reces	sed Single C	ontact) 1	89.1 M	CL					
Watts	Lamp C LIF	ode ANSI	Voltage	Col. Temp.	Lumer ×100	ns Life O		lament 1 Lengt	Burning h Position	Notes	Fig. No.
625	P2/10		220/230, 240/250	3200	15.5	200	SC	120	HOR±4		22
1000	P2/7	EKM	220/230, 240/250	3200	26	200	SC	120	HOR±4		22
1250	P2/12		220/230 240/250	3200	35	200	SC	120	HOR±4		22


Table 23 G6.35 Base

Watts	Lamp Code	Voltage	Col. Temp.	Lumens $\times 1000$	Ave. Life Hrs	Filament	Burning Position	Notes	Fig. No.
650	P2/16	220/230, 240/250	3200	17.5	50	SC	$VBD\pm90$		23.1
850	P2/25	115/120	3200	23.0	50	SC	$VBD\pm90$		23.2
1000	P2/17	220/230, 240/250	3200	28.0	50	SC	$VBD\pm90$		23.1
1250	P2/26	220/230, 240/250	3200	35.0	50	SC	$VBD\pm90$		23.2

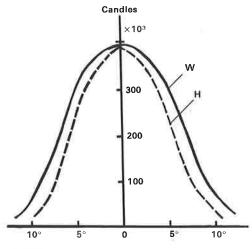
Table 24 R7s Base (Recessed Single Contact) 93.25 MCL

					Ave.					
Watts	Lamp	Voltage	Col.	Lumens	Life	Fil	ament	Burning	Notes	Fig.
	Code	0	Temp.	$\times 1000$	Hrs			Position		No.
1000	DXN	120	3400	33	50	СС	22.9	ANY		24
1000	DXW	120	3200	28	150	СС	25.5	ANY		24

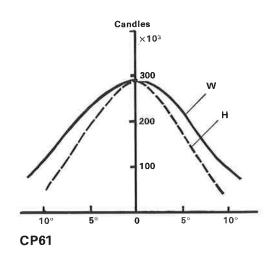
192-5 ±1.0 ±1.0 177-4 ±1.40 120°

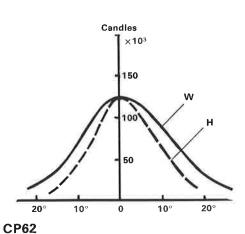
Table 25 Tungsten Halogen Par 64 Sealed Beam Lamp

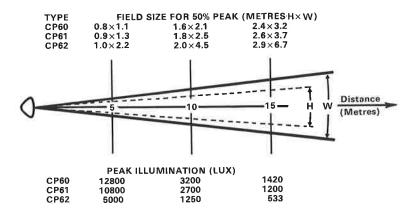
Applications


For use with fittings designed for studio, theatre and similar applications. Available in three beam patterns.

Characteristics


Ref. No.	CP60, CP61, CP62
Volts	220V, 240V
Watts	1 kW
Life (Hrs. Ave.)	300
Operating Position	ANY
Colour Temp.	3200K
Base	E.M.E.P.


Luminous characteristics


Lamp references	CP60	CP61	CP62
ANSI Reference	EXC	EXD	EXE
	Clear	Stipple	Lens
	'Narrow Spot	'Spot'	'Flood'
Pk. Beam Candlepower	320,000	270,000	125,000
Beam Spread 늘 Pk.	9°H×12°W		/11°H×24°W
Beam Spread 1/10 Pk.	17°H×20°W	20°H×22°W	/20°H×38°W

CP60

Halogen Lamp Substitution Guide

Competitors Lamp Requested L.I.F. Codes	T.L.L. Equivalent or Substitute	See Table Number	Notes
CP20	CP32	16	А
CP22	CP30	16	А
CP26	CP29	8	A, C
CP28	CP53	13	A
CP33	CP39	5	A
CP34	CP41	7	A
CP42	CP41	7	А
CP44	CP40	5	A
CP46	CP29	8	А
CP49	CP51	11	A
CP50	CP54	9	A
CP57	CP58	16	A
Т9	T11	3	В
τ10	T12	3	В

Osram Codes

50042	CP51	11	А
50055	∫ T4	10	E
	<u>े</u> T15	12	A
50252	CP53	13	A
51233	HX37	6	A, C
51235	CP39	5	A
51503	CP41	7	А
51703	CP29	8	A, C
51805	CP54	9	A
64719	T12	3	D
64720	CP23	3	
64721	CP39	5	
64744	T11	3	D
64745	CP24	3	
64747	CP40	5	
64788	CP43	2	
64789	CP41	7	

Philips Codes

5970P	CP41	7	
6362P	CP23	3	
6363P	CP24	3	
6364P	CP43	2	
6376C	CP51	11	A
6376P	CP39	5	A
6377C	CP43	2	A
6377P	CP41	7	A
6378P	CP29	8	A
6928P	T11	3	
6940P	T12	3	

Competitors Lamp Requested Philips Codes cont.	T.L.L. Equivalent or Substitute	See Table Number	Notes
7761P	CP40	5	A
7796C	CP52	11	A
7801 P	CP39	5	
7802P	CP40	5	
13111P	CP54	9	A
	(CP23	3	F
6993	CP51 CP39	11 5	F
	CP41	7	F
6994	J HX33] HX26	2 1	D F
	CP53	13	F
6995	{ CP24 { CP40	3 5	F
6996	∫T14	11 3	F
6997	<u>\</u> T11 T15	12	F
6998	{T13 {T12	11 3	F.
Radium			
H138C	CP51	11	A
H165Q	CP53	13	В
H360Y	HX37	6	D
H361Q	CP53	13	D
-1365Y	CP39	5	А
H374X	CP41	7	А
H375X	CP41	7	A
H378X	CP29	8	A, C
		0	

9

12

3

5

3

3

5

3

2

7

А

D

D

H379X

H933C

RH653P

RH653Y

RH657P

RH1003P

RH1003Y

RH1007P

RH2003P

RH2003X

A – T.L.L. lamp is quartz longer life version of lamp requested. B – T.L.L. lamp is longer life version of lamp requested. C – T.L.L. lamp is quartz higher light output version of lamp requested.

CP54

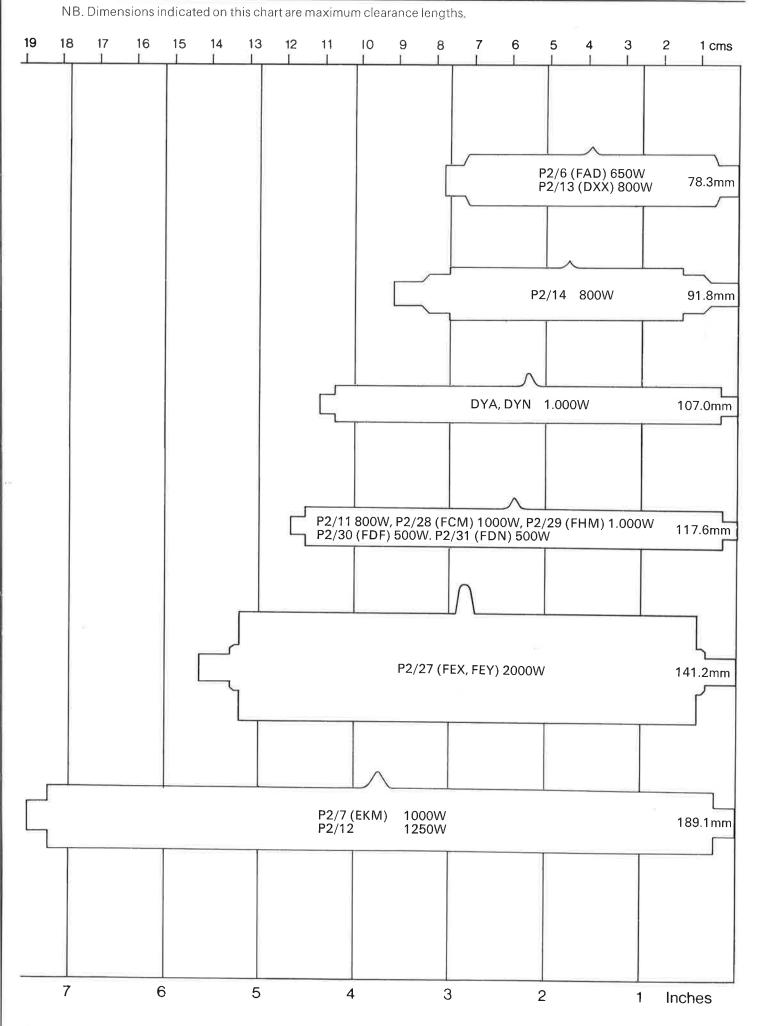
CP23

CP39

CP24

CP40

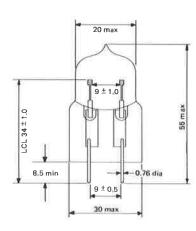
CP43

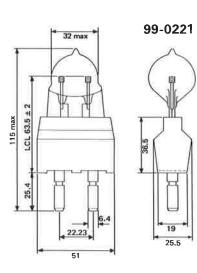

CP41

T11

T12

T15


D-T.L.L. lamp is higher light output version of lamp requested. E-T.L.L. lamp is non-halogen version of lamp requested. F-T.L.L. lamp is monoplane filament higher light output.



28

Compact Source Iodide Lamps (C.S.I.)

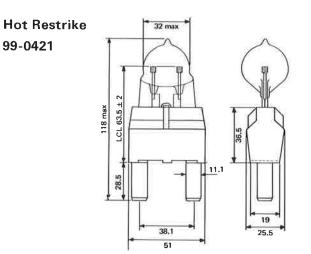

Standard Lamps 99-0201

	Table 26
Lamp Code	99-0201
Watts	400
Supply Volts Any Between	100-240AC
Arc Volts	100 nom
Сар	2 pin, 9.0mm \pm 0.5 spacing
Initial Lumens	32,000
Lumen Maintenance	90%
Average life	500 hours
Operating Position	ANY
Arc Length	9.0±1.0mm
Correlated Colour Temperature (K)	3500 ± 400
Chromacity Co-ordinates Centred at	X = .405 Y = .390

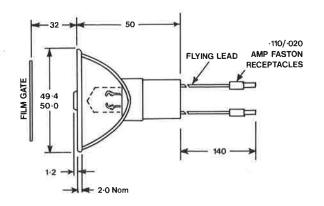

	Table 27
Lamp Code	99-0221
Watts	1000
Supply Volts Any Between	100-240AC
Arc Volts	77 nom
Сар	G22
Initial Lumens	90,000
Lumen Maintenance	90%
Average life	500 hours
Operating Position	ANY
Arc Length	14-15mm
Correlated Colour Temperature (K)	4100±400
Chromacity Co-ordinates Centred at	X=.376 Y=.374

	Table 28
Lamp Code	99-0421
Watts	1000
Supply Volts Any Between	100-240AC
Arc Volts	77 nom
Сар	G38
Initial Lumens	90,000
Lumen Maintenance	90%
Average life	500 hours
Operating Position	ANY
Arc Length	14-15mm
Correlated Colour Temperature (K)	4100 ± 400
Chromacity Co-ordinates Centred at	X=.376 Y=.374

Compact Source Iodide Lamps (C.S.I.)

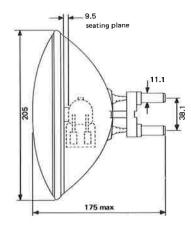
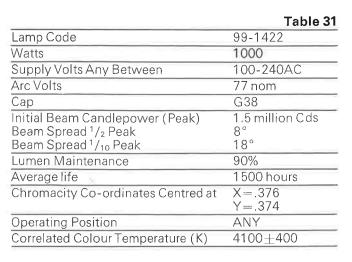
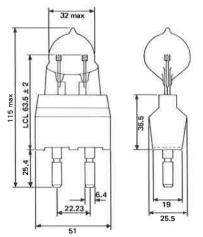

Small CSI 99-2241

	Table 29
Lamp Code	99-2241
ArcWatts	185
Supply Volts	240*
ArcVolts	62 nom
Arc Current	3
Arc Length	2.5
Сар	Flying Leads
Initial Efficacy	70 L/W
Screen Lumens (Open Shutter, Super 8 Gate)	800
Diversity Factor	65%
Life : Nom. Objective	250 hours
Correlated Colour Temperature (K)	4000
Colour Rendering	Good
*H E Supply will also operate from 1(115/120

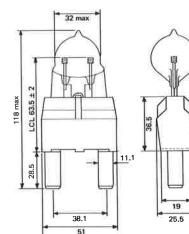

*H.F. Supply will also operate from 100, 115/120, 120 through 240V ratings.

Par 64 Standard 99-1222

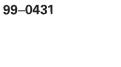


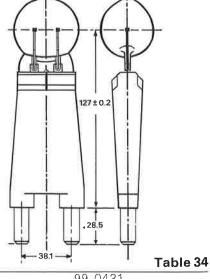
Par 64 Hot Restrike 99-1422	205		9.5 seating plane	
	•	_V. ∙	175 max	

	Table 30
Lamp Code	99-1222
Watts	1000
Supply Volts Any Between	100-240AC
ArcVolts	77 nom
Сар	G38
Initial Beam Candlepower (Peak) Beam Spread ¹ / ₂ Peak Beam Spread ¹ / ₁₀ Peak	1.5 million Cds 8° 18°
Lumen Maintenance	90%
Average life	1500 hours
Chromacity Co-ordinates Centred at	X=.376 Y=.374
Operating Position	ANY
Correlated Colour Temperature (K)	4100±400

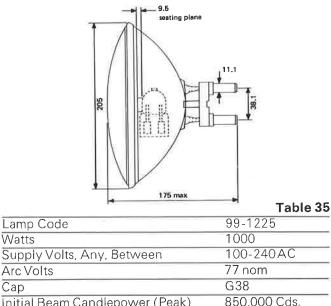


Standard 99-0222



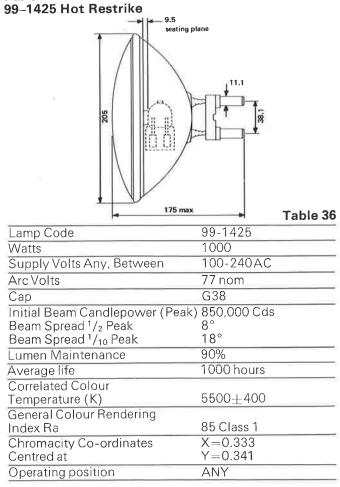

51	Table 32
Lamp Code	99-0222
Watts	1000
Supply Volts Any, Between	100-240AC
ArcVolts	77 nom
Сар	G22
Initial Lumens	70,000
Lumen Maintenance	90%
Average life	500 hours
Operating position	ANY
Correlated Colour Temperature (K)	5500 ± 400
Colour rendering index Ra	85 Class 1
Chromacity Co-ordinates Centred at	X=0.333 Y=0.341

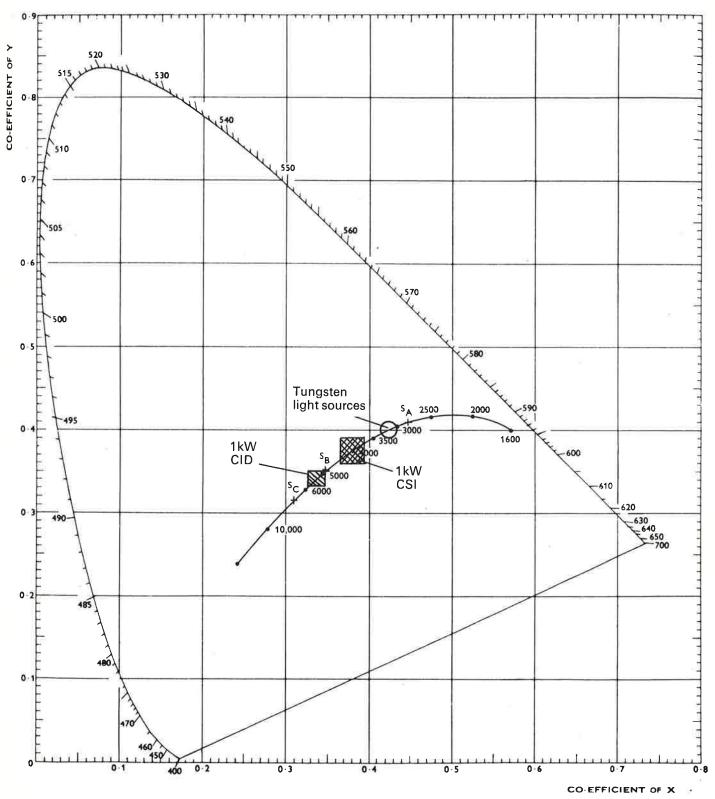
Hot Restrike 99-0422


36.1	20.0
51	Table 33
Lamp Code	99-0422
Watts	1000
Supply Volts Any, Between	100-240AC
Arc Volts	77 nom
Сар	G38
Initial Lumens	70,000
Lumen Maintenance	90%
Äverage life	500 hours
Correlated Colour	
Temperature (K)	5500 ± 400
General Colour Rendering Index Ra	85 Class 1
Chromacity Co-ordinates Centred at	X=0.333 Y=0.341
Operating Position	ANY
Arc Length	14-15mm

Lamp Code	99-0431
Watts	2500
Supply Volts Any Between	100-240 AC
Arc Volts	100 nom
Сар	G38
Initial Lumens	200,000
Lumen Maintenance	90%
Average life	350 hours
Correlated Colour Temperature (K)	5500+400
General Colour Rendering Index Ra	85 Class 1
Chromacity Co-ordinates Centred at	X=0.333 Y=0.341
Operating Position	ANY
Arc Length	16mm

Par 64 99–1225 Standard




Arc Volts	77 nom
Сар	G38
Initial Beam Candlepower (Peak) Beam Spread ¹ / ₂ Peak Beam Spread ¹ / ₁₀ Peak	850,000 Cds. 8° 18°
Lumen Maintenance	90%
Average Life	1000 hours
Correlated Colour Temperature (K)	5500 ± 400
Colour rendering index Ra	85 Class 1
Chromacity Co-ordinates Centred at	X=0.333 Y=0.341
Operating position	ANY

Par 64

Lamp Code

Watts

C.I.E. Trichromatic Co-ordinates with Spectrum Wavelengths in Millimicrons and Standard Illuminants A, B and C

Note : Tolerance of ± 400 K at 5500 K is smaller than ± 400 K at 4100 K. Colour temperature curve relates to black body radiators.

For more detailed information on Studio and Theatre lighting please consult your nearest Thorn Lighting office.

Thorn Lighting Limited Overseas Companies

Australia Thorn Lighting Industries Pty Limited 210 Silverwater Road, Lidcombe New South Wales 2141 Telephone 648-8000 Telex 22350 Thornlit Sydney Austria Thorn Licht GmbH Erzherzog-Karl-Strasse 57, 1220 Wien Telephone (0222) 23 35 71 Telex 136128 Thorn WA Belgium Thorn Benelux SA Vierwinden 11 1930 Zaventem Telephone 02/720.91.00-721 02.73 Telex 62410 Thorn B Canada Thorn Lighting Canada Limited 1400 Meyerside Road, Mississauga, Ontario L5T1H2 Telephone (416) 677-4248 Telex 06-968569 Thorn Msga Denmark Thorn Lampe A/S Fabriksparken 4, DK-2600 Glostrup Telephone (02) 45 25 33 Telex 33533 Thorn DK France Thorn Electrique SA 26 Rue de la Baisse, 69625 Villeurbanne Telephone (78) 84 04 90 Telex 380.900 Thornlec VILRB Germany Thorn Licht Beleuchtungsges mbH Borsteler Chaussee 287, 2000 Hamburg 61 Postfach 610560 Telephone 040 58 01 31 Telex 214743 Thor D Ireland Thorn Lighting Limited 320 Harolds Cross Road, Dublin 6 Telephone 961877 Telex 4596 Torn El Italy Societa Industriale Vicentina Illuminazione SpA Casella Postale 604, 36100 Vicenza Telephone (0444) 59 51 00 Telex 480049 Sivi-I Societa Italiana Distribuzione Articoli Illuminazione SpA 55 Via Venezia, 35100 Padova Telephone 49 661633/661609 Telex 430359 SIDAI PD New Zealand Thorn Electrical Industries (NZ) Limited PO Box 15150, 13a Veronica Street, New Lynn Auckland 7 Telephone 871.169 Telex NZ 2648 Norway Norske Thorn A/S Brobekkveien 107 Oslo 5 Telephone (010 472) 675595 Telex 16928 Atlas N South Africa Thorn Lighting (SA) (Pty) Limited PO Box 43075 corner Watt and Edison Streets Industria TvL Telephone 839 2434 Telex J 0149 Sweden Thorn Belysning AB Anderstorpsvägen 4, Box 4203, 17, 104 Solna Telephone (08) 83 41 00 Telex 10106 Thornab S USA Thorn Lighting Inc Thorn House 23 Leslie Court, Whippany, New Jersey 07981 Telephone 201 386 9525 Telex 710 986-8249 Thorn USA WIPY Thorn Lighting Limited Photographic Division Head Office & Showroom Thorn House, Upper Saint Martin's Lane London WC2H 9ED Telephone 01-836 2444 Telex 24184 TEILdn G Cables Éleciampo WC2

Thorn Lighting Limited UK Regions

Photographic Division Thorn House, Upper Saint Martin's Lane London WC2H 9ED Telephone 01-836 2444 Telex 24184 TEILdn G Cables Eleclampo WC2 Belfast Prince Regent Road, Castlereagh Belfast BT5 6QR Telephone 0232-794122 Telex 74695 TLLBft G Birmingham Thorn House, Aston Church Road Saltley Trading Estate, Birmingham B81 BE Telephone 021-327 1535 Telex 337435 TLLBhm G Cardiff Thorn House, Penarth Road Cardiff, Wales CF1 7YP Telephone 0222-44200 Telex 49334 TLLCdf G Larkhall Thorn House, Industrial Estate Larkhall, Lanarkshire ML9 2PA Telephone Larkhall 886007 Telex 777930 TLLLkh G Leeds Thorn House, 3 Ring Road Lower Wortley, Leeds LS12 6EJ Telephone 0532-636321 Telex 55110 TLLLds G **London** Victoria Trading Estate, Victoria Way Charlton, London SE7 7PA Telephone 01-858 3201 (order office) or 01-858 3281 (all other enquiries) Telex 896171 TLLChn G Manchester Thorn House, 2 Claytonbrook Road Clayton, Manchester M111BP Telephone 061-223 1322 Telex 668642 TLLMcr G Reading 10 Richfield Avenue, Reading RG1 8PA Telephone 0734-53257 Telex 849269 TLLRdg G Government Contracts & Order Office Progress House, Great Cambridge Road Enfield EN1 1UL Telephone 01-363 5353 Telex 263201 TElEnf G

Romford

PO Box 18, 3 King George Close Eastern Avenue West, Romford, Essex RM7 7PF Telephone 0708 66033 Telex Thornlite Rford 897759 Cables Thornlite Rford

5

Thorn Lighting Limited is constantly developing and improving its products. All descriptions, illustrations, drawings and specifications in this publication present only general particulars and shall not form part of any contract. The right is reserved to change specifications without prior notification or public announcement. The majority of the products described herein are manufactured in the United Kingdom, products not so manufactured will bear an appropriate indication. All goods supplied by the Company are supplied subject to the Company's General Conditions of Sale, a copy of which is available on request.

Designed by North West Studio Limited

Printed by Brightman & Stratton Limited